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ABSTRACT 

We obtain a simplicial group model for localization of (not necessarily 
nilpotent) spaces at sets of primes by applying a suitable functor dimen- 
sionwise, as in earlier work of Quillen and Bousfield-Kan. For a set of 
primes P and any group G, let G -~ LpG be a universal homomorphism 
from G into a group which is uniquely divisible by primes not in P, and 
denote also by Lp the prolongation of this functor to simplicial groups. 
We prove that, if X is any connected simplicial set and J is any free 
simplicial group which is a model for the loop space f/X, then the classi- 
fying space WLpJ  is homotopy equivalent to the localization of X at P. 
Thus, there is a map X --+ WLpJ  which is universal among maps from 
X into spaces Y for which the semidirect products 7rk(Y ) )4 ~rl(Y) are 
uniquely divisible by primes not in P. This approach also yields a neat 
construction of fibrewise localization. 

0. In troduct ion  

Cer ta in  construct ions  in homotopy theory are especially suited to the use of sim- 

plicial groups as models. One of such construct ions is Bousf ie ld-Kan completion.  

As shown in [3, IV.4], if R is a subring of the rat ionals  or R = Z/p,  then  the 

R-comple t ion  RooX of any reduced simplicial set X is weakly equivalent  to the 

classifying space W ( G X ) R  , where G X  is Kan ' s  loop group [17] of Z and  ( G X ) R  
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is the dimensionwise R-lower central series completion of GX, which is defined 

in [3, IV.2]. This construction was also studied by Wilkerson in [29] for simply 

connected CW-complexes of finite type, and b.y Quillen in (26] using profinite 

completion. 

In this article we use a similar pattern to obtain a new model for localization 

of spaces at primes, following a suggestion of Dror Farjoun. Let us first recall the 

relevant definitions. A localization of a space X (a CW-complex or a simplicial 

set) at a set of primes P is a map X -+ Xp which is universal in the homotopy 

category among maps from X into P-local spaces. A space is P-local if each of 

its connected components is P-local, and a connected space Y is P-local if the 

self map p,~: flY -+ 12Y induced by a degree n map of S 1 is a weak homotopy 

equivalence for all positive integers n with no prime factors in P. If the space Y is 

simply connected, then this condition means precisely that the homotopy groups 

Irk(Y) are uniquely Pt-divisible for k _> 2, where pt  denotes the complement of 

P in the set of all primes. In fact, for X simply connected, one has rk(Xp) 
~rk(X)| for all k, where Zp denotes the integers localized at P. The properties 

of Xp are well understood when X is simply connected or nilpotent (see [3], 

[15], [29]), so we do not intend to obtain any new information in this case. For 

nonnilpotent spaces, however, the homotopy type of Xp can be very different 

from that  of X, much in the same way as with homological localizations. A 

survey of results in this direction is offered in [4]. 

Our construction of Xp in the present article goes as follows. Given a con- 

nectcd CW-complex X, we may assume that it has a single 0-ceU (since collapsing 

a maximal tree does not change the homotopy type of X). Pick a free simplicial 

group J which is a model for the loop space fiX, with one nondegenerate gen- 

erator in dimension n for each (n + 1)-cell of X, as described in [18] or in [29]. 

If a reduced sirnplicial set X is given instead of a CW-complex, then let J be 

Kan's loop group GX, as in [17]. Now, if Jn denotes the group of n-simplices 

of .1, let J,~ -+ LpJ,~ be its localization at P, i.e. a universal homomorphism 

from Jn into a uniquely Pt-divisible group [27]. We prove that,  if we denote by 

LpJ the simplicial group obtained by applying Lp dimensionwise to J ,  then the 

classifying space W L p J  is a P-localization of X. 

Our argument relies oll properties of uniquely PI-divisible groups, together 

with a spectral sequence described by Quillen in [26]. This spectral sequence 

is useful in our setting thanks to the fact that free groups behave reasonably 

well under P-localization. Namely, if F is a free group, then the localization 

homomorphism F -+ LpF induces isomorphisms H . ( F ;  A) ~- H.(LpF; A) for a 
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wide class of coefficient modules, as shown in [6] and recalled in Section 1 below. 

This is one basic reason why simplicial groups happen to be very suitable as 

models for P-localization of spaces, like in the case of profinite completion or 

Bousfield-Kan completion. However, it is an open problem to decide whether 

ordinary homological localizations [2] fit into the same pattern or not. What  is 

clear is that  localizations with respect to generalized homology theories cannot 

be modeled in principle using dimeusionwise constructions on simplicial groups, 

since such localizations do not preserve connectivity levels in general [23]. 

Indeed, as an application of our technique, we find that if the homotopy fibre 

of a map X -* Y is n-connected for some n >_ 1, then the homotopy fibre of 

the induced map X p  -4 Yp is n-connected too. In practice, this allows one 

to determine homotopy groups of P-localizations of spaces in a certain range 

of dimensions, as in [3, IV.5.1] for completions or in [11] for integral homology 

localizations. 

Another useful application of our results is a neat, explicit construction of 

fibrewise P-localization using simplicial groups. This construction applies to all 

fibre sequences of connected spaces and does not require any extra assumptions 

on the fibre, contrary to former approaches such as in [19]. We thank the referee 

for suggesting that we add this application to the article. 

Our results are stated for simplicial sets with only one vertex, as in [3, IV.4] 

or in many articles on similar topics. This is good enough to yield models for 

localizations of connected simplicial sets or CW-complexes, but it is dissatisfying 

in some aspects, e.g. the need to collapse a maximal tree makes our construction 

functorial only up to homotopy. To remedy this, simplicial groupoids should 
be used instead of simplicial groups; see [12] or [14] for background about sim- 

plicial groupoids. Such a generalization is not carried out in this article, since 

the necessary localization techniques in the category of groupoids are not yet 

available. 

ACKNOWLEDGEMENTS: We are indebted to Jeff Smith for explaining to us the 

basic features of prolongation of functors and for enlightening discussions. We 

also acknowledge earlier conversations with Emmanuel Dror Farjoun and George 

Peschke on this topic. 

1. Uniquely divisible groups 

Let P be any set of primes, possibly empty, which will remain fixed throughout. 

We adopt the usual convention of denoting by P~ the complement of P in the 

set of all primes, and saying that n is a P'-number if n is a positive integer with 
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no prime factors in P.  A group G is called P-local or uniquely PI-divisible if the 

map x ~ x'* is bijective in G for every P~-number n. For every group G there is 

a natural homomorphism, called P-localization, 

lc: G --4 LpG, 

which is initial among homomorphisms from G to uniquely Pt-divisible groups; 

see [6] or [27]. (We use the expression LpG instead of Gp to avoid notational dif- 

ficulties later in the article; however, we keep denoting by Zp the P-localization 

of the additive group of integers, i.e. the group of rational numbers whose de- 

nominator is a PI-number.) 

This defines an idempotent functor Lp on groups, in the following sense. A 

functor L in a category C is called idempotent if it is equipped with a natural 

transformation l: Id -~ L such that, for every object X, the two morphisms lLx 
and Llx from LX to LLX coincide and are isomorphisms. If L is an idempotent 

functor, then the objects X such that lx: X ~ LX  is an isomorphism are called 

L-local, and the maps f :  X --+ Y such that Lf: L X  ~ LY  is an isomorphism are 

called L-equivalences. Thus, a group homomorphism f :  G ~ K will be called a 

P-equivalence if Lpf:  LpG ~ LpK is an isomorphism. 

If F is free, then lf: F ~ LpF is a monomorphism. The group LpF was 
described by Baumslag in [1] using a different terminology. He proved that LpF 
is isomorphic to the union of a (possibly transfinite) ascending chain of groups Fi, 

where F0 = F and, for each ordinal i, the group F~+I is an amalgamated sum 

Zp *u Fi for a certain subgroup Z C_ U C_ Zp and a certain embedding U ~-~ F~. 

This description shows that  LpF has homological dimension 2, and it also shows 

that  the map If: F ~ LpF induces homology isomorphisms 

Hk(F; Zp) ~ Hk(LpF; Zp) 

for all k. In fact, as shown in Corollary 7.3 and Theorem 8.7 of [6], if F is free 

then the P-localization homomorphism induces isomorphisms 

Hk(F;A) '~ Hk(LpF;A) and Hk(LpF;A) ~ Hk(F;A) 

for all modules A over LpF which are P-local in the following sense. An abelian 

group A with an action of a group G is a P-local module over G if the structure 

map ZG ~ End(A) sends the elements of the form 1 + x + x 2 + . . .  + x n-1 to 

automorphisms, where x E G and n is any P*-number. This is equivalent to 

imposing that  the semidirect product A >~ G be uniquely P~-divisible; see [6]. If 

the action of G is trivial, then a P-local module over G is just a Zp-module. 
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We shall need a few remarks about uniquely divisible groups, which we collect 

in this section for convenience. Some of these remarks only rely on the fact that 

P-localization is an idempotent functor, so we state them in their full generality. 

The next result follows from Proposition 1.2.1 in [13]. 

LEMMA 1.1: I l L  is any idempotent functor in a category C, then the full sub- 

category of  L-local objects is closed under limits. | 

Thus, let Z be any small category and F any diagram indexed by Z in the 

category of groups. If F(i) is uniquely P'-divisible for every i E Z, where P 

is any set of primes, then the (inverse) limit of F is also uniquely P'-divisible. 

Therefore, the class of uniquely P'-divisible groups is closed under pull-backs, 

and the kernel of every homomorphism between uniquely P'-divisible groups is 

uniquely P'-divisible. 

Every idempotent functor L in a category C, if regarded as a functor from C to 

the full subcategory :D of L-local objects, is left adjoint to the inclusion functor of 

:D into C. Therefore, L preserves colimits; see [20, V.5]. In particular, L preserves 

coequalizers, so we have 

L(coeq(f, g)) ~ L(coeq(Lf,  Lg)) 

for any two parallel arrows f ,  g in C, if coequalizers exist in C. This fact will 

be crucial in Theorem 4.1, so we state it more precisely but omit the standard 

proof. 

LEMMA 1.2: Let L be any idempotent functor in any category. Let c~: B --~ C be 

a coequalizer of  two morphisms f ,  g: A ~ B, and let ~: L B  ~ D be a coequalizer 

of L f and Lg. Then LC ~- LD. Moreover, the unique morphisms & C --+ D and 

7: D -+ L C  such that ~ o a = ~ o IB and "r o fl = La  are L-equivalences. | 

A coequalizer a: B ~ C of two morphisms f,  g: A ~ B in an arbitrary category 

will be called a simplicial coequalizer if there is a morphism s: B ~ A such that  

f o s = g o s = ldB (hence, f and g are necessarily epimorphisms). In the category 

of groups, this implies that C is isomorphic to the quotient of B by the subgroup 

generated by the elements of the form f (a)g(a) -1 with a E A. (The condition 

that  a is a simplicial coequalizer guarantees that this is a normal subgroup, since 

we may write bf(a)g(a)- lb  -1 = f(s(b)as(b) -1) g(s(b)as(b)-l) -1, for all a e A 

and b E B.) 
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THEOREM 1.3: Let  a: B --+ C be a simplicial coequalizer of  two group homo- 

morph isms  f ,  g: A --+ B where A and B are uniquely P'-divisible.  Then C is 

uniquely P'-divisible.  

Proof: The  group C is P ' -divis ible  because it is an epimorphic  image of a 

P ' -d ivis ib le  group. Suppose tha t  a(x )  n = a(y)  n with x , y  E B and n a 

P ' - n u m b e r .  Then  y-nx '~ is in the kernel of a ,  so we can write 

(1.1) y--nXn = f ( a l ) g ( a l ) - l  . . .  f (ak )g (ak)  -1 

for a finite set of elements { a l , . . . , a k }  in A. Now pick Co = s(y  n) and ci = 

s(g(a~)) for i = 1 , . . . , k ,  where s is a common  spli t t ing for f and g. Then  

f (co)  = g(co) = yn and f (c i )  = g(ai)  = g(ci) for i = 1 , . . . , k .  Hence, we can 

rewri te  (1.1) as 

x"  -- f ( c o ) f ( a l ) f ( c l )  - 1 . . .  f ( a k ) f ( c k )  -1 --- f ( c o a l c l  x . . .  akc-~l). 

Since A is P ' -divis ible ,  there is an element d E A such tha t  

d n _- e 0 a l r  1 . . . a k C k l  

and the equat ion x n = f ( d )  n in B tells us tha t  x = f (d ) .  On the other  hand,  our 

choices have been made  so as to guarantee  tha t  g(d) n = y'*, from which we infer 

tha t  g(d) = y. Therefore,  x y  - 1  = f (d )g(d)  -1,  and this implies tha t  a(x )  -- a (y ) ,  

as desired. II 

COROLLARY 1.4: Let  G be a simplicial group. I f  Go and G1 are uniquely 

P'-divisible,  then so is to (G) .  

Proof: By definition, the project ion Go ~ to (G)  is a simplicial coequalizer 

of the faces do, d 1 : G 1  --~ Go, where the common  spli t t ing is precisely the 

degeneracy so. | 

In fact, we have the following: 

PROPOSITION 1.5: l f  G is a simplicial group in which Gn is uniquely P'-divis ible  

for every  n >_ O, then the homotopy  groups 7r,~(G) are P'-divisible for n >_ O. 

Proof: Let N G  be the Moore chain complex associated with G; see [7, w 3] 

or [21, w 17]. Thus,  (NG)o  = Go and, for k _> 1, ( N G ) k  is the intersection 

of the kernels of the faces di: Gk ~ Gk-1  for 0 < i < k - 1. The  differential 

Ok: ( N G ) k  --+ ( N G ) k _ I  is the restriction of dk. 
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Since (NG)k is a pull-back of a diagram where all groups are uniquely 

P'-divisible by assumption, (NG)k itself is uniquely P'-divisible, for k >_ 0, by 

Lemma 1.1. For the same reason, ker0k is uniquely P'-divisible for k _> 1. 

So is also im0k+l,  since P '-roots  exist in im0k+l as it is an epimorphic image 

of (NG)k+I, and they are unique because im0k+l is contained in (NG)k. Now 

Lemma 1.6 below implies that,  for n _> 1, the abelian group 

7rn(G) = ke r0n / im0n+l  

is uniquely P'-divisible. The case n = 0 has been stated in Corollary 1.4. II 

In general, a group which is P'-divisible and P'-torsion-free need not be 

uniquely P'-divisible; a counterexample is given after Theorem 39.6 in [1]. How- 

ever, if a group A is nilpotent and P'-divisible, then A is uniquely P'-divisible if 

and only if A is P'-torsion-free; see Theorem 13.6 in [1] or Corollary 1.2.3 in [15]. 

This fact yields the following result, as in Corollary 13.7 in [1]. 

LEMMA 1.6: Let A = G/N, where G and N are uniquely P'-divisible groups 

and A is nilpotent. Then A is uniquely P'-divisible. | 

2. P r o l o n g a t i o n  of  f u n c t o r s  

Every functor L from a category C to a category 79 can be extended to a functor 

from the category of simplicial objects over C to the category of simplicial objects 

over 79, by applying L at each dimension, and to the face and degeneracy maps. 

Such an extension is called a prolongation of the functor L. If we view a simplicial 

object over C as a functor X: A ~ ~ C, where A ~ is the opposite of the category 

whose objects are the ordered sets [n] = {0, 1 , . . . , n }  and whose morphisms 

In] -+ [m] are order-preserving maps, then the prolongation of L assigns to every 

X the composite functor 
Ao p X C L 79. 

We shall be especially interested in the prolongation of endofunctors from 

the category of groups to the category of simplicial groups. Recall from [25, 

II.3.7] that the category of simplicial groups admits a simplicial model cate- 

gory structure where, for a simplieial group G and a simplicial set X, one de- 

fines G | X as the simplicial group where (G @ X)n is a free product of copies 

of Gn indexed by Xn. In the terminology of [17, w 4], a loop homotopy be- 

tween two homomorphisms f, g: G --+ K of simplicial groups is a homomorphism 

H: G | All] --~ K such that H0 - f and H1 --- g. (Every loop homotopy is also 
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a homotopy between the underlying maps of simplicial sets, but not conversely.) 

The following result is commonplace. 

LEMMA 2.1: Let L be any functor in the category of simplicial groups which is a 

prolongation of a functor from groups. If two homomorphisms f and g are loop 

homotopic, then so are L f and Lg. 

Proo~ We show, more generally, that for every simplicial set X and every 

simplicial group G, there is a homomorphism 

L G |  ~ L ( G |  

which is natural in G and X and is the identity when X is a point. This implies 

our claim, by choosing X = All] and considering the composite 

LG | A[1] --+ L(G | A[I]) ~-~ LK, 

where H is a loop homotopy between f and g, as in [8]. 

Thus, for every n _> 0, we apply L to the natural inclusions of Gn into 

G | X, yielding homomorphisms LGn ~ L(G | X), which add up together 

into a homomorphism LG | X ~ L(G | X) with the desired properties. | 

A homotopy functor is a functor which carries weak equivalences into weak 

equivalences. Functors defined by prolongation in the category of simplicial 

groups are far from being homotopy functors in general (for instance, the as- 
sumption that B be free cannot be deleted from Theorem 5.1 below). However, 

the technique of prolongation can be used to construct homotopy functors in 

the category of reduced simplicial sets by the following method, which was ex- 

ploited by Bousfield and Kan in [3, IV.4]. Given a functor L in the category of 

groups, we may assign to each reduced simplicial set X the reduced simplicial 

set WLGX,  where G is Kan's Loop group functor and W is the classifying space 

functor (see [17, w 10]). A weak equivalence f:  X -+ Y yields a weak equivalence 

G f: GX ~ GY of simplicial groups, which is then a loop homotopy equivalence, 

since GX and GY are free; see Proposition 6.5 in [17]. By Lemma 2.1, the in- 

duced map LGf: LGX -+ LGY is a loop homotopy equivalence, so W L G f  is a 

homotopy equivalence. This shows that WLG is indeed a homotopy functor. 

Well-known instances of this construction yield alternative descriptions of the 

Dold-Thom infinite symmetric product [9], 

SP~ ~- W(GX)ab, 
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and the Bousfield-Kan R:completion functor 

W(cx;R, 
where R is a subring of the rationals or Z/p, and the corresponding functor on 

groups is R-lower central series completion [3, IV.2]. 

In the rest of the article, we describe another homotopy functor which is ob- 

tained analogously, by choosing L to be localization at a set of primes P in the 

category of groups, that is, the functor which assigns to every group a uniquely 

P'-divisible group in a universal way. An interesting feature of the resulting 

functor on reduced simplicial sets is that it is homotopy idempotent, contrary to 

the two examples above. 

3. L o c a l i z a t i o n  of  s p a c e s  

For a set of primes P,  a simplicial set X (or a CW-complex) is called P-local if 

it is local in the sense of Dror Farjoun [10] with respect to all degree q maps of 

the circle S i for q E P' .  That  is, X is P-local if and only if X is fibrant and the 

maps 

pq: map(S i, X) --+ map(S l, X) 

induced by degree q maps S i --+ S i are weak equivalences for q E P'. 

As explained in [6], a connected space X is P-local if and only if the funda- 

mental group zri(X) and each of the semidirect products rk(X)  ~ r l ( X ) ,  k _> 2, 

are uniquely P'-divisible. Using the terminology given in Section I, X is P-local 

if and only if Irl(X) is a P-local group and, for k _> 2, 7rk(X) is P-local as a 

module over lrl (X). 

A map f :  X --+ Y is called a P-equivalence if, for every map g: X -+ Z where Z 

is P-local, there is a map h: Y -+ Z, unique up to homotopy, such that h o f _ g. 

A recognition principle for P-equivalences was given in Theorem 3.2 of [6], as 

follows: 

THEOREM 3.1: A map f: X -+ Y of connected spaces is a P-equivalence if and 

only if 

�9 f . :  ~ri(X) ~ ~rl(Y) is a P-equivalence of groups, and 

�9 f*: Hk(Y; A) ~ Hk(X; A) for a11 k and every P-local module A over the 

group LpTrl(Y). | 

According to Theorem 3.3 in [6], for every space X there is a map Ix: X -~ X p  

where Xp is P-local and lx is a P-equivalence. Such a map will be called a 
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P-localization of X. Up to homotopy, this coincides with Dror Farjoun local- 

ization [10] with respect to a set of degree q maps of S 1 with q E P'. In the 

subcategory of simply connected (or nilpotent) spaces, it coincides, up to homo- 

topy, with the classical localization at sets of primes; see [3], [15]. 

4. P r o o f  o f  t h e  m a i n  r e su l t  

As in the previous sections, we fix a set of primes P and denote by Lp the 

P-localization functor in the category of groups. For a reduced simplicial set X, 

we consider the map r lx :X  -+ W L p G X  which is adjoint to the homomorphism 

G X  -+ L p G X  given by prolongation of Lp to simplicial groups; that is, r/x is 

the composite of the natural weak equivalence X ~ W G X  with the map induced 

by the homomorphism GX ~ LpGX.  

Our main result is that r/x is homotopy equivalent to the P-localization 

Ix: X --+ Xp  described in Section 3. We devote the rest of this section to 

giving a proof of this claim. 

THEOREM 4.1: For any simplicial group G and any set of primes P there is a 

natural isomorphism zro( L pG) ~ L pTro( G). 

Proof: From Lemma 1.2 it follows that the homomorphism 7r0(G) --~ 7ro(LpG) 

is a P-equivalence of groups, and Corollary 1.4 tells us that the group 7ro(LpG) 

is uniquely P~-divisible. II 

THEOREM 4.2: For every reduced simplicial set X and every set of primes P, 

the natural map rlx: X -~ W L p G X  is a P-equivalence. 

Proof." First, the induced homomorphism of fundamental groups, 

7rx(X) ~ 7rl(WLpGX), 

is a P-equivalence if and only if the homomorphism 

7ro(GX) ~ 7ro(LpGX) 

induced by the localization map GX ~ L p G X  is a P-equivalence, which is the 

case by Lemma 1.2. 

Secondly, we have to prove that the homomorphisms 

H k ( W L p G X ;  A) -~ Hk(X; A) 
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induced by r/x are isomorphisms for every P-local module A over 7ro(LpGX); see 

Section 3. For this, we use a first-quadrant spectral sequence due to Quillen [26], 

which, for a simplicial group G and a module A over 7r0 (G), takes the form 

E~'" = ~rrHS(G; A) ~ Hr+~(WG; A), 

where HS(G; A) is regarded as a cosimplicial abelian group with H~(Gn; A) in 

dimension n. 

In our situation, (GX)n is a free group for every n, and therefore, by Corol- 

lary 7.3 and Theorem 8.7 in [6], the P-localization homomorphism (GX)n 
Lp(GX),~ induces isomorphisms 

HS(Lv(GX),; A) ~- HS((GX)n; A) 

for s > 0 and every P-local module A over ~ro(LpGX). This is in fact an 

isomorphism of cosimplicial abelian groups, and Quillen's spectral sequence yields 

an isomorphism 

Hk(WLpGX; A) "~ Hk(WGX; A) 

for k >_ 0, as desired. | 

Our next aim is to prove that, for every X, the space WLpGX is P-local. 

If X is a simplicial set and G is a simplicial group, then the (unpointed) function 

space map(X, G), whose n-simplices are the simplicial maps X x A[n] --+ G, 

admits a natural structure of a simplicial group where multiplication of two maps 

is defined pointwise. Therefore, the following result is straightforward. 

LEMMA 4.3: Let G be a simplicial group which is uniquely P'-divisible at every 
dimension. Then, for every simplicial set X, the simplicial group map(X, G) is 

uniquely P'-divisible at every dimension. | 

LEMMA 4.4: Let G be any simplicial group. Then 

7r,(G) >~ 7r0(G) ~ lro(map(S'~,G)) for n >_ O. 

Proof: Recall that  7r0(G) acts on ~rn(G) by 

[g]. Ix] = x 

where g E Go, x E (NG)n, and so denotes the corresponding degeneracy of G. 

Thus, the map 
r  o(map(Sn,C)) 
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given by r = ([f(e,) s'd(f(eo))-x], [f(eo)]), is a group homomorphism (com- 
pare with Theorem 1.7 in [24]); here e0 and en are the nondegenerate simpliees 

of S'*. This homomorphism has a two-sided inverse given by r [9]) = [f], 

where f(eo) = g and f(en) = x s'~(g). | 

THEOREM 4.5: For any simplicial group G and any set of primes P, the simplicial 

set WLpG is P-local. 

Proof." By Lemma 4.4, we have 

rn(WLpG) )~ 7rI(WLpG) ~ ~r0(map(S "-1, LpG)), 

and, by Lemma 4.3, the simplicial group map(S n- l ,  LpG) is uniquely 

P'-divisible at every dimension, so we may use Corollary 1.4 to complete the 

argument. | 

Now, Theorem 4.2 and Theorem 4.5 yield together our main result: 

THEOREM 4.6: If X is any reduced simplicial set and P is any set of primes, 

then the space W L p G X  is homotopy equivalent to the P-localization Xp. | 

5. App l i ca t i ons  

In practice, one often works with connected CW-complexes instead of reduced 

simplicial sets. The following extension of Theorem 4.6 yields manageable mod- 

els for P-localizations of connected CW-complexes, by using the free simplicial 

groups considered by Kan in [18]. Given a connected CW-complex X, replace it, 

if necessary, by a homotopy equivalent CW-complex with a single 0-cell. Then let 

J be a free simplicial group with a nondegenerate generator in dimension n for 

every (n + 1)-cell of X, as described in [18]. Thus, J is loop homotopy equivalent 

to the free simplicial group obtained by applying Kan's loop group functor G to 

the reduced singular complex of X (which is much larger than J in general). By 

the next result, we may use J to calculate Xp as well. 

THEOREM 5.1: Let X be any reduced simplicial set and P any set of primes. If J 

is any free simplicial group which is weakly equivalent to G X,  then W L p J ~_ X p. 

Proof: Since J is a free simplicial group, there is a loop homotopy equivalence 

h: J --+ GX, by Proposition 6.5 in [17]. By Lemma 2.1, Lph is a loop homotopy 

equivalence, from which it follows that the induced map W L p J  --+ W L p G X  is 

a homotopy equivalence. | 
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The assumption that J be free in Theorem 5.1 can be weakened, by imposing 

only that  the homomorphisms 

Hi(J,,; A) --+ Hi(LpJ,,;  A) 

induced by the P-localization Jn ~ LpJn be isomorphisms for all i, n, and 

every P-local module A over ro(LpJ) .  This is seen by looking carefully at the 

proof of Theorem 4.2. For example, J could be nilpotent at, every (timension (by 

Theorem 4.3 in [6]); compare also with Corollary 3.5 in [26]. 

As a consequence of our description of the P-localization functor, we gain a 

good control of its "low dimensional behaviour", as in [3, IV.5]. Indeed, if two 

CW-complexes or simplicial sets X and Y have isomorphic n-skeleta, then their 

P-localizations X p  and Yp have isomorphic n-skeleta too, since our construction 

of P-localization is carried out dimensionwise. Wc state this result in the same 

form as in [3, IV.5.1]. 

THEOREM 5.2: Fix an integer n >_ 0 and a set of  primes P. I f  f :  X -+ Y 

is a map of  spaces such that the induced homomorphism r k ( X )  --+ r k ( Y )  is an 

isomorphism for k <_ n and an epimorphism for k = n+ 1, then ~rk (Xp)  -~ rk (Yp)  

is also an isomorphism for k <_ n and an epimorphism for k = n + 1. | 

In other words, if the homotopy fibre of f :  X ~ Y is n-connected for some 

n _> 1, then the homotopy fibre of ]p: X p  -~ Yp is n-connected as well. 

A consequence of Theorem 5.2 is that the homotopy groups 7rk(Xp) of the 

P-localization of a space X can easily be calculated for k _< n if either the 
(n + 1)-skeleton or the nth Postnikov section of X is a nilpotent space; of. [15]. 

That is, if 7r:(X) is a nilpotent group acting nilpotently on ~rk(X) for 2 < k < n, 

then 

7rk(Xp) "~ 7rk(X ) @ Zp for k <_ n. 

A similar result was proved for integral homology localizations in Theorem 1.1 

of [II]. 
Our description of P-localization of spaces using simplicial groups admits a 

relative version, namely fibrewise P-localization of fibre sequences. Fibrewise lo- 

calizations or completions were first discussed by Sullivan in Theorem 4.2 of [28] 

and Bousfield-Kan in [3, IV.5.7], and later developed by May in [22]. Fibrewise 

localization at sets of primes was described by Llerena in [19] under the assump- 

tion that tile fibre be nilpotent. More recently, fibrewise Iocalizations have been 

considered in greater generality by Dror Farjoun in [10, 1.F]. 
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Our construction of fibrewise P-localization applies in fact to any fibre sequence 

F --+ X --> B in the category of reduced simplicial sets. Thus, we are implicitly 

assuming that the map f :  X ~ B is surjective and the induced homomorphism 

r~(X)  --+ 7rt(B) is an epimorphism. By [25, II.3.10], the induced epimorphism 

G f:  G X  --+ G B  is a fibration of simplicial groups. Its fibre is the simplicial group 

K where Kn = ker(Gf)n.  Both the natural homomorphism G F  --+ K and its 

adjoint map F -+ W K  are weak equivalences; cf. [25, II.3.11]. 

LEMMA 5.3: The kernel K of  the epimorphism G f : G X  -~ G B  is a free simplicial 

group. 

Proo~ Since (GX)n  is free for all n, the subgroup Kn is also free for all n. Thus, 

in order to prove that K is a free simplicial group, we have to exhibit bases for 

each K ,  which are stable under the degeneracies of K. We shall not distinguish 

notationally between the degeneracies of distinct simplicial sets. Recall however 

that  the degeneracy s~: (GX),~-I --+ (GX),~ is the homomorphism spanned by 

si+1: Xn --~ Xn+I, for i = 0 , . . .  ,n  -- 1. Since the group (GB)n is free on the set 

Bn+l - so(Bn), we may define inductively homomorphisms 

o.:  ( a B ) .  ( a X ) n  

for each n, by imposing that anOSi = s~Oan_l for i = 0 , . . . , n -  1, where n >_ 1, 

and that (Gf )n  o an be the identity for all n. (Note that such a a does not 

necessarily commute with the face operators.) Then the image of an is a Schreier 

system of coset representatives of the kernel Kn in (GX)n  (of. [7, w 4] or [16, 

w 18]). Hence, as in Corollary 4.7 in [7], the group K,~ is freely generated by the 

elements 

an(w) z a n ( ( G f ) , ( z ) )  -1 a n ( w ) - ' ,  

with w C (GB)n and x �9 Xn+l - so (X , )  - an(Bn+l - so(Bn)). By our choice 

of an, these elements form a basis which is closed under the degeneracies of G X ,  

hence of K. | 

Now, for each n, we apply the relative P-localization functor of [5] to the group 

extension 

K. (GX). (V.)., 

yielding a commutative diagram 

(5.1) 
Kn ~-~ (GX)n --" (GB)n 

3, 3, id J. 
L p K ,  ~ En ~ (GB)n 
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which is universal in the category of group extensions among morphisms from the 

upper extension into extensions with P-local kernel; of. Theorem 1.4 in [5]. This 

allows us to endow the sequence of groups En with the structure of a simplicial 

group, which we denote by E. Thus, we obtain a fibration E ~ G B  of simplicial 

groups with fibre L p K ,  and a commutative diagram of fibre sequences 

F -~ X ~ B 
(5 .2 )  ~ $ ~ ~ -~ 

W L p K  ~ W E  ~ W G B ,  

where the left vertical map l is the composite F --+ W K  -+ W L p K ,  and the 

map e is adjoint to e: G X  ~ E. We call (5.2) the fibrewise P-localization of the 

given fibration. This tcrminology is justified by the following theorem. 

THEOREM 5.4: The map l: F ~ W L p K  is a P-localization and e: X ~ W E  is 

a P-equivalence of reduced simplicial sets. 

Proof'. The first claim follows from Theorem 5.1, since K is a free simplicial 

group (by Lemma 5.3) which is weakly equivalent to GF. To prove the second 

claim, we usc tile description of P-equivalences given in Theorem 3.1. By Propo- 

sition 1.3 in [5], the hornomorphism en in (5.1) is a P-equivalence for all n. From 

the fact that e0 and el are P-equivalences it follows, by Theorem 4.1, that the 

homomorphism 7ro(GX) -4 no(E) induced by e0 is a P-equivalence of groups. 

Next, let A be any P-local module over LpTro(E). Then (5.2) induces a mor- 

phism of first-quadrant spectral sequences for cohomology with coefficients in A. 

(A suitable reference for such spectral sequences with twisted coefficients is [25, 

II.6.17] for homology or Proposition 2.1 in [26] for cohomology.) Since we al- 

ready proved that the left vertical arrow l in (5.2) is a P-localization, we see that 

l*: H k ( W L p K ;  A) ~ Hk(F; A) is an isomorphism for all k. This implies that 

e*: H k ( W E ;  A) "~ Hk(X;  A) for all k as well. II 
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